INFRARED SPECTRA OF THIOPHENE ANALOGS OF CHALCONES AND THEIR VINYLOGS

S. V. Tsukerman, V. M. Nikitchenko, Yu. S. Rozum, and V. F. Lavrushin

Khimiya Geterotsiklicheskikh Soedinenii, Vol. 3, No. 3, pp. 452-458, 1967

UDC 543.422 + 547.733

The IR spectra of 45 thiophene analogs of chalcones and vinylogs, and (2-thienyl)phenylketone are determined in the $1700-650 \text{ cm}^{-1}$ region, and frequency assignments made. It is confirmed that the carbonyl group and aliphatic double bond are so situated with respect to one another that there is approximation to the S-cis form. It is shown that in the systems studied, 2-thienyl has an electron-donating effect, exceeding that of 2-furyl. It is also found that for 1-(2-thienyl)-3-aryl-propen-1-ones the carbonyl group frequency shift due to substituents tends to correlate with the Hammett o parameters.

Previous communications have dealt with results of studies of UV and visible region absorption spectra [1] and dipole moments [2] of a regular series of α , β unsaturated ketones containing the thiophene ring. Continuing work on elucidating relationships between properties and structures of these compounds, we decided to measure their IR spectra.

The literature information on IR spectra of thiophene derivative carbonyl compounds is rather limited. There are relevant data only for thiophene aldehyde, 2-acetothienone, thiophene carboxylic acids, esters of these, and some other compounds [3-8]. Hitherto the vibration spectra of thiophene analogs of chalcone and their vinylogs have not been investigated.

We have carried out measurements, generally on solids, but in some cases on carbon tetrachloride and chloroform solutions, of the IR spectra of 45 thiophene analogs of chalcones and of their nearest vinylogs, as well as, for comparison, (2-thienyl)phenylketone. Tables 1 and 2 give the characteristic vibration frequencies of the individual groups, and some absorption plots are given in Fig. 1.

All the α , β unsaturated ketones investigated showed an absorption band whose intensity varied from medium to high, characteristic of out-of-plane deformation vibrations of hydrogens of the vinylene group trans to the substituents. Generally the band was at 965 cm⁻¹ [9], but here, as a result of conjugation with the carbonyl group, or with the aromatic and thiophene rings it is displaced in the higher frequency direction, and lies at $970-1000 \text{ cm}^{-1}$. With compounds containing two (XXVIII-XLII) and three (XLIII-XLV) double bonds, this absorption is particularly intense; it lies in the $990-1015 \text{ cm}^{-1}$ region, and sometimes consists of two bands. It is noteworthy that, as a rule, the intensity of a carbonyl group valence vibrations band is considerably less than the intensity of absorption of an aliphatic double bond (see Fig. 1). It is known that this kind of intensity relationship for the C=O and C=C bonds bands is an analytical indicator of their being S-trans to one another [10-13]. Thus the IR spectra data confirm the conclusions previously drawn from studies of dipole moments [2], that the thiophene analogs of chalcones and their vinylogs studied by us are trans isomers as

Fig. 1. IR spectra of compounds I, II, and XLVI.

far as the relative position of substituents and aliphatic double bond is concerned, while the relative position of the carbonyl and vinyl groups corresponds to S-cis conformations. It is of interest that the conclusion drawn [10] that $\Delta \nu = \nu_{C==O} - \nu_{C==C}$ should be over 60 cm⁻¹ for the S-cis form, is not in accord with what is found for many of our ketones (see Table 1), while the figure of 75 cm⁻¹ [14, 15] is in even poorer agreement.

All the thiophene ketones investigated show a sharply defined absorption maximum in the 1635-1670 cm^{-1} region characteristic of valence vibrations of the carbonyl group. In the case of measurements made in chloroform solution (see Table 2), $\nu_{C=O}$ is $5-11 \text{ cm}^{-1}$ lower than the corresponding ones in carbon tetrachloride, in agreement with reported inferences regarding the effect of the hydrogen bond formed (see [16], p. 393). This confirms a view which three of us put forward from a study of electronic spectra, about hydrogen bonding of α , β unsaturated ketones of the thiophene series in ethanol and chloroform solution [1]. In comparison with solutions in carbon tetrachloride, $\nu_{C=O}$ in the solid phase is lower by $3-8 \text{ cm}^{-1}$, which can be put down to a change in the C=O bond force constant due to the action of the crystal field, and to weakening of the dipole orientation (see [16], p. 380).

Replacement of the benzene ring in chalcone $(\nu_{C=O} = 1669 \text{ cm}^{-1}; \nu_{C=C} = 1610 \text{ cm}^{-1})$ [17] by a

Г	
Table	

Characteristic Frequencies of Thiophene Analogs of Chalcones and Their Vinylogs

I.	1	-														
	Trans CH=CH	975. 980	975 990	965 985	978 982	975	066	026	986	982	980 975 984	980 987 982	987 988	066	066	026
	-of- C-H	860 870	860	0 8 8 0 8 0 8 8 0 8 8 0 8 8 8 8 8 8 8 8	860 860	870	860	860	860	860	860 870 873 873	865 865 865	858 850	845	843	1
n, cm ⁻¹	Out plane	850 840	845	048 1 8	828 828	830	840	830	847		860 845	832 843 820	822 822	819	827	823
	ions	1244 1240	1246	1240	1242	1240	1238	1235	1235	1242	1242 1242 1237 1245	1246 1240 1240	1238 1233	1243	1245	1245
sorptio	vibrat	1358	1353	1360	1365	1370	1345	1360	1375	1385	1360 1365 1365 1365 1370	1373	1373	1370	ł	ł
Ab	Ring	1415	1412	1425	1419	1422	1425	1425	1420	1420	1422 1425 1416 1410	1430 1413 1455	1432	1430	1445	1432
	C=C	1594 1590	1575	1595	1610	1585	1575	1612	1615	1610	1608 1597 1593 1593	1585 1600	1610	1595	1613	1610
	C=0	1652 1660	1640 1650	1601	1640	1650	1648	1642	1635	1640	1660 1660 1650 1665	1665 1653 1657	1650	1669	1650	1666
	formula	C4H ₃ S-CO-CH=CH-C ₆ H ₅ * C4H ₃ SCH=CH-COC ₆ H ₅	C4H ₃ S-CO-CH=CH-C4H ₃ S C4H ₃ S-CO-CH=CH-C6H ₄ -CH ₃ C	C4H3S-CH=CH-CO-C6H1-CH3 C4H3S-CO-CH=CH-C6H4-OCH3 C 2 C C CH-CH-CCH-C6H4-OCH3	$C_4H_3S - CH = CH - CO - C_6H_4 - CCH_3$ $C_4H_3S - CO - CH = CH - C_6H_3 (OCH_3)_2$	$C_4H_3S-CH=CH-CO-C_6H_3(OCH_3)_2$	C ₄ H ₃ SCOCH=-CHC ₆ H ₂ (OCH ₃) ₃	$C_4H_3S-CH=CH-CO-C_6H_2(OCH_3)_3$	C ₄ H ₃ S-CO-CH=CH-C ₆ H ₄ -N(CH ₃) ₂	$C_4H_3S-CH=CH-CO-C_6H_4-N(CH_3)_2$	C ₄ H ₃ SCO-CH=CH-C ₆ H ₄ Cl C ₄ H ₃ SCH=CH-CO-C ₆ H ₄ Cl C ₄ H ₃ SCOCH=CHC ₆ H ₄ Cl C ₄ H ₃ SCH=CHCOC ₆ H ₄ C ₆ H ₅	C4H ₃ S-CO-CH=CH-C ₆ H ₄ -NO ₂ C4H ₃ S-CH=CH-CO-C ₆ H ₄ -NO ₂ O ₂ N-C.H ₅ S-CO-CH=CH-C ₆ H ₂	0_{2N} —C4H ₂ S—CH=CH=CH-CO-C ₆ H ₅ 0 ₂ N—C4H ₂ S—CO-CH=CH-C6H-C ₆ H ₄ 0 ₂ N—C4H ₂ S—CO-CH=CH-C ₆ H ₄ —NO ₂	0 ₂ N-C ₄ H ₂ S-CH=CH-CO-C ₆ H ₄ -NO ₂	O ₂ N-C ₄ H ₂ S-CO-CH=CH-C ₆ H ₄ -OCH ₃	$O_2N-C_4H_2S-CH=CH-CO-C_6H_4-OCH_3$
	Name	1-(2- Thieny1)-3-pheny1propen-1-one 1-(2- Thieny1)-3-pheny1propen-3-one	1, 3-Bis(2-thienyl)propen-1-one 1-(2-Thienyl)-3-(4-methylphenyl)propen-1-one 1-02-Thienyl)-2-(4-methylphenyl)propen-2-20	1 (2 Thucu)1) 3-(#-Incur)sphenylphopen-3-One 1-(2-Thicnyl)-3-(4-methoxyphenyl)propen-1-one 1-(2-Thicnyl)-3-(4-methoxyphenyl)propen-2-one	1-(2-Thieny1)-3-(2, 4-dimethoxypheny1)pro-	1-(2-Thienyl)-3-(2, 4-dimethoxyphenyl)pro-	1-(2-Thienyl)-3-(2, 4, 6-trimethoxyphenyl)pro-	1-(2-Thenyl)-3-(2, 4, 6-trimethoxyphenyl)pro-	1-(2-Theory)-3-(4-dimethylaminophenyl)pro-	1-(2-Thieny1)-3-(4-dimethylaminopheny1)pro-	<pre>1-(2-Thienyl)-3-(4-chlorophenyl)propen-1-one 1-(2-Thienyl)-3-(4-chlorophenyl)propen-3-one 1-(2-Thienyl)-3-(4-diphenylyl)propen-1-one 1-(2-Thienyl)-3-(4-diphenylyl)propen-3-one</pre>	1-(2- Thieny1)-3-(4- nitropheny1)propen-1-one 1-(2- Thieny1)-3-(4-nitropheny1)propen-3-one 1-(5- Nitro-2-thienv1)-3-thenv1hronen-1-one	1-(5-Nitro-2-thienyl)-3-phenylpropen-3-one 1-(5-Nitro-2-thienyl)-3-(4-nitrophenyl)pro-	pen-1-one 1-(5-Nitro-2-thienyl)-3-(4-nitrophenyl)pro-	pen-3-one 1-(5-Nitro-2-thienyl)-3-(4-methoxyphenyl)pro-	1-(5-Nitro-2-thienyl)-3-(4-methoxyphenyl)pro- pen-3-one
Com-	punod	11			VIII	IX	×	XI	XII	XIII			IXX	IIIXX	XXIV	XXV

	Trans CH=CH	066	066	984 970 985	985	1000	995	995	016	1000	995 987	1015 980 980	990 1010 995
	t-of- sC-H		848	862 884 865	860	855	865	865	880	860	855 845	860	840 890 860 870 870
	Out plane	820	820	835 860 840	840	840	840	840	1	835	830	835 818 823	818 865 840 840 842
, cm ⁻¹	ions	1	1243	1260 1245 1239	1232	1232	1255	1230	1240	1235	1238 1235	1260 1248 1230	1263 1240 1232 1238 1237
orption	vibrati			1370 1365 1364	1372	1370	1370	1370	1375	1370		1370	1362 1370 1370 1370
Abse	Ring	1430	1455	1417 1415 1423	1430	1430	1415	1427	1425	1422	1420 1418	1423 1440 1433	1426 1415 1425 1425 1430 1419
	C=C	1584	1570	1586 1595 1595	1610	1608	1612	1610	1613	1595	1590 1597	1590 1583 1625	1588 1616 1615 1623
	C≡0	1650	1648	1642 1653 1652	1653	1658	1640	1656	1664	1670	1643 1653	1663 1652 1655	1650 1640 1664 1664 1633
	Formula	02N-C4H2S-CO-CH=CH-C6H3(OCH3)	$O_2N-C_4H_2S-CO-CH=CH-C_6H_2(OCH_3)_3$	C ₄ H ₃ SCO(CH=CH) ₂ C ₆ H ₅ C ₄ H ₃ SCH=CHCOCH=CHC ₆ H ₅ C ₄ H ₃ SCO(CH=CH) ₂ C ₆ H ₄ OCH ₃	C4H ₃ S-CH=CH-CO-CH=CH-C ₆ H ₄ -	$C_4H_3S-(CH=CH)_2-CO-C_6H_4-OCH_3$	$C_4H_3S-CO-(CH=CH)_2-C_6H_3(OCH_3)_2$	$C_4H_3S-(CH=CH)_2-CO-C_6H_3(OCH_3)_2$	$C_4H_3S-CH=CH-CO-CH=CH-C_6H_2-C_6H_2$	$C_4H_3S-(CH=CH)_2-CO-C_6H_2(OCH_3)_5$	$C_4H_3S-CO-(CH=CH)_{2-}C_6H_4-NO_2$ $C_4H_3S-CH=CH-CO-CH=CH-C_6H_4-NO_2$	$ \begin{array}{c} C_{4}H_{3}S-(CH=CH)_{2}-CO-C_{6}H_{4}-NO_{2}\\ O_{2}N-C_{4}H_{2}S-CO-(CH=CH)_{2}-C_{6}H_{5}\\ O_{2}N-C_{4}H_{2}S-CH=CH-CO-CH=CH-\\ \end{array} $	$\begin{array}{c} \overset{-C_6H_5}{=} & C_{4H_5} \\ O_{2N} - C_4 H_5 S - (CH = CH)_2 - CO - C_6 H_5 \\ C_4 H_3 S - CO - (CH = CH)_3 - C_6 H_5 \\ C_4 H_3 S - CH = CH - CO - (CH = CH)_2 - C_6 H_5 \\ C_4 H_3 S - (CH = CH)_2 - CO - (CH = CH - C_6 H_5 \\ C_4 H_3 S - (CH = CH)_2 - CO - CH = CH - C_6 H_5 \\ \end{array}$
	Name	1-(5-Nitro-2-thienyl)-3-(2, 4-dimethoxyphenyl)pro-	1-(5-Nitro-2-thieny1)-3-(2, 4, 6-trimethoxypheny1)pro-	1-(2-Thienyl)-5-phenylpentadien-1-one 1-(2-Thienyl)-5-phenylpentadien-3-one 1-(2-Thienyl)-5-(4-methoxyphenyl)pentadien-1-one	1-(2-Thienyl)-5-(4-methoxyphenyl)pentadien-	1-(2-Thienyl)-5-(4-methoxyphenyl)pentadien-	1-(2-Thienyl)-5-(2, 4-dimethoxyphenyl)pentadien-	1-(2-Thienyl)-5-(2, 4-dimethoxyphenyl)pentadienon-	1-(2-Thienyl)-5-(2, 4, 6-trimethoxyphenyl)pentadien-	1-(2-Thienyl)-5-(2, 4, 6-trimethoxyphenyl)pentadien-	D- One 1-(2- Thienyl)-5-(4- nitrophenyl)pentadien-1- one 1-(2- Thienyl)-5-(4- nitrophenyl)pentadien-3- one	1-(2- Thienyl)-5-(4-nitrophenyl)pentadien-5-one 1-(5-Nitro-2-thienyl)-5-phenylpentadien-1-one 1-(5-Nitro-2-thienyl)-5-phenylpentadien-3-one	1-(5-Nitro-2-thienyl)-5-phenylpentadien-5-one 1-(2-Thienyl)-7-phenylheptatrien-1-one 1-(2-Thienyl)-7-phenylheptatrien-3-one 1-(2-Thienyl)-7-phenylheptatrien-5-one (2-Thienyl)phenylketone
-	punod	ΙΛΧΧ	ΙΙΛΧΧ	XXX XIXX III/XX	IXXXI	IIXXX	шххх	VIXXX	VXXX	ΙΛΧΧΧ	IIIVXXX IIVXXX	XLIX XLXXX XIXXX	IATX ATX ATX AITX IIITX IIITX

Table 1 (cont'd)

thiophene one results in decrease in valence vibrations frequency of the carbonyl group and of the aliphatic double bond (cf. I-III). This decrease is greater when thienyl replaces a phenyl substitutent immediately adjacent to the carbonyl group, and it is particularly great when both phenyls are replaced by thienyl.

Table 2

Carbonyl Group Characteristic Frequencies

Com-	$\nu_{C=0'} \text{ cm}^{-1}$										
pound	KBr tables	CC14	CHC13								
I II XXVIII	1652 1660 1640 1642	1655 1663 1648 1645	1650 1652 1640 1639								

Hence in these systems the thiophene ring exhibits a greater electron-donating effect than phenyl, causing a decrease in electron density at the carbonyl oxygen, and consequent lowering of $\nu_{C=0}$; here there is greater conjugation of thienyl with the carbonyl group when they are next to one another. This latter fact is also confirmed by the spectrum of I having more intense absorption bands in the 1200–1600 cm⁻¹ region than II (see Fig. 1).

Comparison of $\nu_{C=O}$ for thiophene series α , β unsaturated ketones with $\nu_{C=O}$ for analogous thiophene derivative compounds [17], shows that in the in the former case $\nu_{C==O}$ is always lower than in the latter (by $8-10 \text{ cm}^{-1}$). When investigating electronic absorption spectra of α , β unsaturated ketones containing furan and thiophene rings [1,18,19], it was established that λ_{\max} for the long wave band differed little in the two cases, so that the effects of conjugation of these two heterocyclic rings is approximately equal. From a study of bond lengths and dipole moments of furan and thiophene, Braude and Fawcett [20] concluded that 2-furyl and 2-thienyl have approximately equal static conjugation effects. Hence it follows that the appreciably lower value of $\nu_{C=0}$ for thiophene ketones in comparison with furan ones, must not be ascribed to a difference in conjugation effects. It is best explained as being due to the negative inductive effect of furyl being greater than that of thienyl [21], so that the total electron-donating effect of thienyl exceeds that of furyl. It is of interest that, on the contrary the total dynamic electrondonating effect of 2-furyl is greater than that of 2-thienyl [21, 22]. A comparatively low valence vibrations frequency is found for (2-thienyl)-phenylketone (XLVI) though it lacks a conjugated double bond, which latter usually lowers $\nu_{C=0}$ by about 40 cm⁻¹ (cf. [9], p. 426). Possibly it arises, as a result of an increase in valence angle at the carbonyl group, due to steric effects, which are known to lead to lowering of the frequency [23, 24].

In most cases introduction of electron-donating groups $(CH_3, CH_3O, (CH_3)_2N)$ into the molecule of the thiophene analog of chalcone results in appreciable

lowering of $\nu_{C=0}$ (see IV-XIII), while on the other hand electron-accepting groups raise $\nu_{C=0}$ (see XIV. XV, XVIII, XIX). This change in $\nu_{C=0}$ under the action of substituents of different electronic nature tends to run parallel to the Hammett equation σ constants, as can be seen, for example, from Fig. 2, which shows how $\Delta \nu_{C=0}$ is a function of the McDaniel and Brown σ parameters [25] in the case of 1-(2thienyl)-3-arylpropen-1-ones. The lowering of $\nu_{C=0}$ is ascribed to the accumulation of vinylene groups in the ketone molecule, i.e. the transformation from propenones to pentadienones and heptatrienones is not accompanied by removal of carbonyl groups from the heterocyclic ring, e.g. (I, XVIII, XLIII etc.).

The characteristic vibrations of the aliphatic double bond for the compounds investigated due to conjugation with the carbonyl group, are considerably lowered, in comparison with the usual ones, by the thiophene and aromatic rings, and occur in the 1575-1615 $\rm cm^{-1}$ region. Replacement of phenyls in the chalcone by thienyls, also gives rise to a 16-35 cm⁻¹ $\nu_{C=C}$ lowering. An even greater $\nu_{C=C}$ lowering is brought about by transition from propenones to pentadienones, then further to heptatrienones, and is sometimes accompanied by band splitting. The effects of the various substituents in the aromatic ring on $\nu_{C=C}$ is less pronounced than on $\nu_{C=O}$; however here too there is a tendency to lowering of $\nu_{C=C}$ through the action of neighboring electrons, and to an increase due to electron-acceptors (cf. IV-XIX).

Brown σ parameter.

The thiophene ring shows up in the spectrograms of ring in-phase and out-of-phase vibrations in the ~1420, ~1350 and ~1240 cm⁻¹ regions. The thiophene ring vibration band, given in [3], and lying at $1523 \pm$ \pm 9 cm⁻¹ can in most cases be observed only in compounds where the carbonyl groups are directly joined to the heterocyclic ring; furthermore, in a number of cases it is hard to differentiate between it and the absorption due to aromatic systems. However, in the case of III, where aryl is absent, it can easily be seen at 1520 cm^{-1} (medium intensity). It should be noted that chalcone itself shows absorption at the 1340 cm^{-1} region (above medium intensity). All this goes to show that the thiophene ring vibrations in α , β unsaturated ketones can be followed most clearly by bands at 1420 and 1240 cm^{-1} .

Thienyl C-H planar deformation vibrations at 1081 ± 3 cm⁻¹ [3] are clear only for those of the

present ketones where the carbonyl group is beside the heterocyclic ring. Such a band, then, as that at 1043 cm^{-1} cannot serve to identify the thiophene ring, since in the majority of cases it is very weak, and furthermore in the case of chalcone there is absorption in the 1035 cm^{-1} region.

2-Substituted thiophenes can further be identified by heterocyclic ring C-H out-of-plane deformation vibrations, lying in the 830-890 cm⁻¹ region (see Table 1). There, however, it must be remembered that not far away are C-H deformation vibrations of 1, 4-disubstituted benzenes at 810-832 cm⁻¹ (see [16], p. 316), of 1, 2, 4-trisubstitued benzenes at 805-825 cm^{-1} , and of 1, 2, 4, 6-tetrasubstituted benzenes, which here appeared at 820-830 cm⁻¹. For these reasons it was difficult to identify with our compounds, the thiophene ring "breathing" vibrations band, which according to published [3] data is at $823 \pm 20 \text{ cm}^{-1}$. A paper [3] gives yet another band characteristic of C-H out-of-plane vibrations of 2-substituted thiophenes, at $925 \pm 8 \text{ cm}^{-1}$. We, like Hidalgo [26], did not find this absorption. 5-Nitro-2-thienyl derivatives (XX-XXVII) have a high-intensity band at 818-830 cm⁻¹, probably owing their origin to out-of-plane cophase vibrations of two adjacent C-H bonds. Here there is also often observed a weak absorption at $880-890 \text{ cm}^{-1}$, which can be assigned to C-N valence vibrations (see [16], p. 432).

A nitro group at position 5 in the thiophene ring (XXI-XXVII, XL-XLII) is characterized by highly intense bands, where the frequency of the antisymmetric vibrations is appreciably lowered, and lies in the 1492-1510 cm⁻¹ region. This is most probably bound up with the electron-donating nature of the thiophene ring, it being known that conjugation with donor groups decreases the corresponding frequency (see [9], p. 426). In this connection it is characteristic that the nitro group frequency decreases, when the carbonyl group moves away from the thiophene ring. With compounds XVIII, XIX, XXXVII-XXXIX, where the nitro group is in the benzene ring, ν_{as} is in the usual region at 1515-1533 cm⁻¹. With regard to the nitro group symmetric vibrations band, it is usually combined with the absorption due to thiophene ring vibrations $(1354 \pm 7 \text{ cm}^{-1} [3])$ and the absorption of the chalcone at 1340 cm⁻¹, and is distinguished by an altogether high integral intensity in the 1328-1360 $\rm cm^{-1}$ region.

Many of the compounds investigated contained a methoxyl group joined to an aromatic ring (VI-X, XXIV-XXVII, XXX-XXXVI). Its characteristic vibration frequencies are, agreeing with the results of other authors [27] in the 1260-1330 cm⁻¹ region; methyl-oxygen valence vibrations lie at 1020-1040 cm⁻¹. The latter band can be identified quite well, and with accumulation of methoxyl groups in the molecule, its frequency is appreciably raised. Thus when one methoxyl group is present it is at 1020-1028 cm⁻¹ (VI-VII), in the case of 1, 3-dimethoxy derivatives at 1027-1033 cm⁻¹ (VIII, IX), and with 1, 3, 5-trimethoxy groups, at 1030-1040 cm⁻¹ (X, XI). It should be noted that with (2-thienyl)phenylketone band intensities, as compared with the chalcone analogs and the vinylogs, are distinctly lower, and that the number of bands is less (see Fig. 1).

EXPERIMENTAL

IR spectra were determined, using an IKS-14 instrument, in CCl_4 and $CHCl_3$, and with a UR-10 instrument tabletted with KBr (1.5 mg compound per 100 mg KBr), over the region 1800-650 cm⁻¹.

REFERENCES

1. S. V. Tsukerman, V. M. Nikitchenko, and V. F. Lavrushin, ZhOKh, 32, 2677, 3971, 1962; 33, 1255, 2563, 1963.

2. S. V. Tsukerman, V. M. Nikitchenko, V. D. Orlov, and V. F. Lavrushin, KhGS [Chemistry of Heterocyclic Compounds], 232, 1967.

3. A. R. Katritzky and A. J. Boulton, J. Chem. Soc., 3500, 1959.

4. V. P. Litvinov and V. A. Morozov, Izv. AS USSR, OKhN, 232, 1961.

5. Yu. B. Bol'kenshtein, B. V. Lopatin, and V. A. Petukhov, Izv. AN SSSR, OKhN, 917, 1962.

6. S. Gronowitz and A. R. Katritzky, J. Chem. Soc., 3881, 1963.

7. A. E. Lipkin, N. I. Putokhin, and B. V. Rassadin, ZhOKh, 33, 3073, 1963.

8. E. M. Popov, F. M. Stoyanovich, B. N. Fedorov, and G. M. Andrianova, ZhOKh, 33, 2261, 1963.

9. L. Bellamy, The Infrared Spectra of Complex Molecules [Russian translation], IL, Moscow, 1963.

10. R. Mecke and K. Noack, Chem. Ber., 93, 210, 1960.

11. R. Z. Erskine and E. S. Waight, J. Chem. Soc., 3425, 1960.

12. V. M. Aleksanyan and E. V. Sobolev, DAN,

150, 118, 1961; Izv. AN SSSR, OKhN, 1336, 1963.

13. E. Iliel, Stereochemistry of Carbon Compounds [in Russian], Mir, Moscow, 324, 1965.

14. E. A. Braude and C. J. Simmons, J. Chem. Soc., 3766, 1955.

15. K. Nakanisi, Infrared Spectra and Structures of Organic Compounds [Russian translation], Mir, Moscow, 164, 1965.

16. R. N. Jones and C. Sandorfy, in collection: Chemical Applications of Spectroscopy, W. West (ed.), [Russian translation], IL, Moscow, 1959.

17. S. V. Tsukerman, A. I. Artemenko, V. F.

Lavrushin, and Yu. S. Rozum, ZhOKh, 34, 2309, 1964. 18. V. F. Lavrushin, S. V. Tsukerman, and A. I. Artemenko, ZhOKh, 32, 2551, 1962; 33, 878, 3528,

1963; 34, 487, 1964.

19. S. V. Tsukerman, I. K. Gintse, and V. F. Lavrushin, ZhOKh, 34, 2311, 1964.

20. E. A. Braude and J. S. Fawcett, J. Chem. Soc., 4158, 1952.

21. Yu. K. Yur'ev, M. A. Gal'bershtam, and A. F. Prokof'ev, Izv. VSh, Khim. i khim. tekhnol., 7, 598, 1964.

KHIMIYA GETEROTSIKLICHESKIKH SOEDINENII

22. S. V. Tsukerman, L. A. Kutulya, and V. F. Lavrushin, KhGS [Chemistry of Heterocyclic Compounds], 803, 1965.

23. L. Ingraham, in collection: Steric Effects in Organic Chemistry, M. S. Newman (ed.), [Russian translation], IL, Moscow, 511, 1960.

24. K. Bowden and H. Chapman, Canad. J. Chem. 41, 2154, 1963.

25. D. H. McDaniel and H. C. Brown, J. Org. Chem. 23, 420, 1958. 26. Hidalgo, J. Phys. Radium., 16, 366, 1955.
27. A. R. Katritzky and N. A. Coats, J. Chem.
Soc., 2062, 1959.

2 August 1965

Gor'kii State University, Khar'kov Institute of Organic Chemistry AS UkrSSR, Kiev